ANTI-GRAVITY HARNESS TEAM

TEAM 10

Eileen Baker

Hasan Farman

Khaled Alosaimi

Noah Oliver

AJ. Garcia

Project Aims

- Almost 1 million children in the U.S. suffer from diseases like muscular dystrophy or cerebral palsy
- Children with limited mobility are often unable to socialize, leading to developmental challenges later in life
- Parents of these children are often limited by resources

[1

[2

Project Description

- The goal of this project is to design a anti-gravity balancing harness system
- The client is Dr. Kyle Winfree from the Wearable Informatics Lab at NAU
- The product is directed towards children (under the age of 18) who need assistance moving about the house
- The system must be simple enough that parents with limited resources and engineering knowledge can construct it

Background Devices

G-Trainer

- Technology patented by the National Aeronautics and Space Administration (NASA) in 2005
- Removes need for a harness
- Reduces body weight up to 80%
- Approved by FDA in 2008 for use in hospitals and universities

[3] G-Trainer

Background Devices

ZeroG System

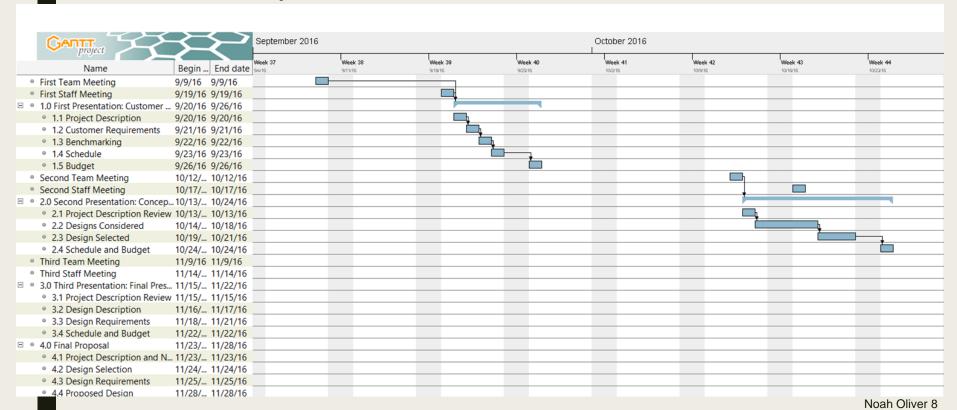
- Patients placed in harness, secured to spreader bar
- Ceiling track supports weight, even through vertical movements like sit to stand
- Register falls through velocity or vertical distance settings
- Supports patients 10-200 lbs moving up to 6 mph

[4] ZeroG

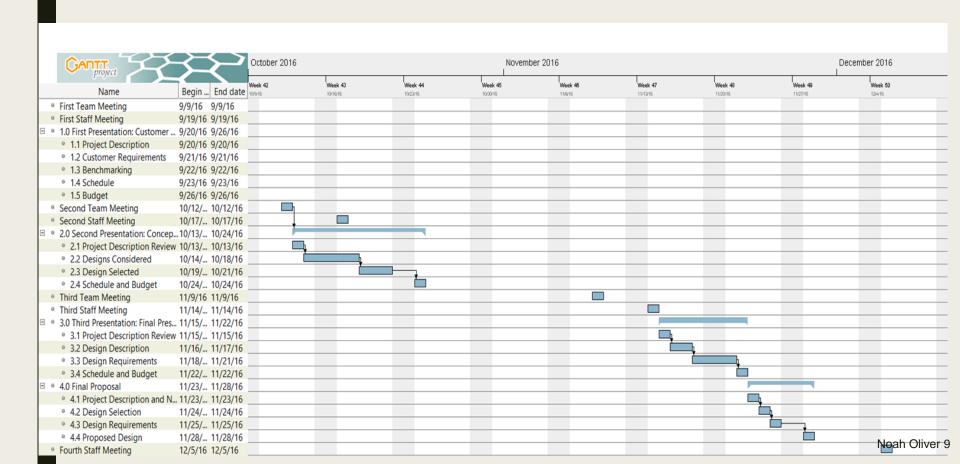
Background Devices

GlideCycle

- Uses seat and suspension to support pelvis and body weight (60-90%)
- Allows user to walk, run, and even sprint with less strain on joints
- Designed for users up to 230lb and anywhere from 4'-6'2" in height
- If needed for a child, could modify as a trike or quad


[5] GlideCycle

Customer Requirements


Customer Requirement	Weight (x/10)
Safety: Low choking/entanglement risk	10
Ease of Assembly: Avoid machining, complex parts	7
Adjustability: Accommodate different sized children or growth	5
Durability : Materials pass various strength or fatigue tests	7
Size: Is unobtrusive and allows user to interact freely	6
Comfort: Refrain from using coarse/irritating materials	8

Schedule

■ We are currently on schedule with all due dates

Schedule

$Budget \ (\textit{Estimated Fall Prototype})$

	Cost	Material	Length(ft) /Wide
Sliding Barn Kit	\$49.99-\$400	Carbon Steel Steel Aluminum.	0.666667 / 6 ft
GuideWire (Rob: it connects from the barn to Johnny jumper)	It depends on the length needed. 46¢-80\$	Natural fibers Nylon Polyester	2 ft - infinity
Harness	\$14.99 - \$80	Plastic + Cloth	15.6 x 7.0 x 3.2

[6

Total Estimate: ~\$280

Total Budget

Total Dollars Available: \$1500

Anticipated expenses:

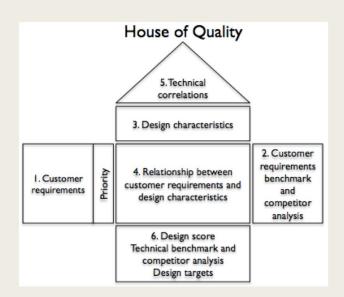
Fall Semester Prototype: \$280

Spring Semester Prototype: \$380

Final Product: \$480

Actual expenses to date: \$0

Resulting Balance: \$1140



Future Work

- House of Quality
 - Translate CR to ER
- Begin design process
 - Design system and subsystem levels
 - Create multiple concept sketches
- Select design
 - Determine if designs conform to customer requirements
 - Confirm final design with client for approval

References

- [1] "Definition of Cerebral Palsy", *cerebralpalsy.org*, 2016. [Online]. Available: http://www.cerebralpalsy.org/about-cerebral-palsy/definition.
- [2] "Muscular Dystrophy Association", *Muscular Dystrophy Association*, 2016. [Online]. Available: https://www.mda.org/.
- [3] N. S., "'Anti-Gravity' Treadmills Speed Rehabilitation," National Aeronautics and Space Administration 2009.
- [4] J. Hidler, D. Brennan, i. Black, D. Nichols, K. Brady and T. Nef, "ZeroG: Overground gait and balance training system", *The Journal of Rehabilitation Research and Development*, vol. 48, no. 4, p. 287, 2011.
- [5] D. Vidnar, "Join the Running Revolution," GlideCycle, 2015. [Online]. Available: http://glidecycle.com.
- [6] Kohl's. "Johnny Jump Up Door Jumper." Kohls, 2016. [Online]. Available:http://www.kohls.com/.